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Abstract: Although measurement of total hippocampal volume is considered as an important hall-

mark of Alzheimer’s disease (AD), recent evidence demonstrated that atrophies of hippocampal 

subregions might be more sensitive in predicting this neurodegenerative disease. The vast majority of 

neuroimaging papers investigating this topic are focused on the difference between AD and patients 

with mild cognitive impairment (MCI), not considering the impact of MCI patients who will or not convert in AD. For 

this reason, the aim of this study was to determine if measurements of hippocampal subfields provide advantages over to-

tal hippocampal volume for discriminating these groups. Hippocampal subfields volumetry was extracted in 55 AD, 32 

converted and 89 not-converted MCI (c/nc-MCI) and 47 healthy controls, using an atlas-based automatic algorithm based 

on Markov random fields embedded in the Freesurfer framework. To evaluate the impact of hippocampal atrophy in dis-

criminating the insurgence of AD-like phenotypes we used three classification methods: Support Vector Machine, Naïve 

Bayesian Classifier and Neural Networks Classifier. Taking into account only the total hippocampal volume, all classifi-

cation models, reached a sensitivity of about 66% in discriminating between c-MCI and nc-MCI. Otherwise, classification 

analysis considering all segmenting subfields increased accuracy to diagnose c-MCI from 68% to 72%. This effect re-

sulted to be strongly dependent upon atrophies of the subiculum and presubiculum. Our multivariate analysis revealed that 

the magnitude of the difference considering hippocampal subfield volumetry, as segmented by the considered atlas-based 

automatic algorithm, offers an advantage over hippocampal volume in distinguishing early AD from nc-MCI. 

Keywords: Atrophy, automated segmentation, classification models, freesurfer, hippocampal subfields, mild cognitive  
impairment, volumetry. 

1. INTRODUCTION 

The most common cause of neurodegenerative dementia 
in the elderly population is Alzheimer's disease (AD). The 
clinical diagnosis of AD requires the presence of multiple 
cognitive deficits, including memory impairment, whereas 
the underlying pathological processes appear to begin and 
covertly progress several years before. As a consequence, an 
increased interest has been focused on identifying mild cog-
nitive deficits characteristic of the preclinical phase of AD in 
order to slow down or prevent disease progression.  

*Address correspondence to this author at the IBFM-CNR, Viale Europa, 
88100 Germaneto (CZ), Italy; Tel: +39-0961-3695904; Fax: +39-0961-
3695919; E-mail: a.cerasa@unicz.it 
#Data used in preparation of this article were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As 
such, the investigators within the ADNI contributed to the design and im-
plementation of ADNI and/or provided data but did not participate in analy-
sis or writing of this report. A complete listing of ADNI investigators can be 
found at: at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ 
ADNI_Acknowledgement_List.pdf. 
§These authors equally contributed to this work  

Mild cognitive impairment (MCI) is a transitional phase 
characterized by memory disturbance in the absence of de-
mentia, followed by widespread cognitive deficits in multi-
ple domains until a disability threshold is reached and tradi-
tional diagnostic criteria for probable AD are fulfilled [1, 2]. 
In particular, studies have shown that MCI patients convert 
to AD at an annual rate of 10–15% per year [3]. It is known 
that MCI patients who do not convert to AD either remain 
stable or develop other forms of dementia or, very rarely, 
revert to normal status [4]. 

In the past 20 years, a considerable effort has been put 
into the development of advanced neuroimaging processing 
techniques in order to identify biomarkers that could reliably 
improve the diagnostic confidence of clinical diagnosis. In 
particular, the importance of imaging in AD diagnosis has 
been underlined by the inclusion of imaging markers in new 
criteria proposed for earlier diagnosis of AD [1, 5]. For sev-
eral years, it has been proposed that among all the MRI 
markers of AD [6], hippocampal atrophy assessed on high-
resolution T1-weighted MRI is one of the most significant 
and consistent markers of progression of AD [1].  
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However, in the last few years, several lines of evidence 
proposed that the measure of the total hippocampal volume 
might not be sufficiently sensitive to discriminate AD-like 
phenotypes. This hypothesis is based upon the fact that ap-
proximately 30% of patients in pre-clinical stage of AD 
(MCI), which will convert to AD in the next 18 months, do 
not have prominent hippocampal atrophy at basal MRI [7]. 

Moreover, the volumetric evaluation of a whole structure 
cannot provide information about the contribution of specific 
subregions in atrophy or expansion, thus preventing a prop-
erly detailed disease-related regional impairment. Indeed, 
hippocampus is not a homogenous structure, consisting of 
several histologically distinct subfields: subiculum, cornu 
ammonis sectors (CA1-3) and dentate nucleus [8]. The exis-
tence of different pathways (meaning different memory 
processing) and distinctive histological characteristics sug-
gests that hippocampal subfields might be involved in the 
course of AD-related neurodegeneration at different stages. 
Several post-mortem studies [9-10] have indeed demon-
strated that tau pathology, neuronal loss and tangles accumu-
lation first affect the transentorihnal region of the perinhinal 
cortex, followed by the entorhinal cortex and the CA1 sub-
field, finally extending into the CA4 and the subiculum, 
which stresses the importance of the choice of boundary se-
lection during the segmentation [11].  

Preliminary neuroimaging studies confirmed this regional 
predominance of AD-related pathological changes, demon-
strating that volumetric losses of the CA1 and subiculum are 
more sensitive than total hippocampus volume to the effects 
of AD pathology burden [12-19]. However, at least two con-
founding variables limit the sensitivity of hippocampal vol-
ume as biomarker of AD: first, the vast majority of these 
studies performed univariate analysis contrasting AD pa-
tients with respect to MCI; second, there is considerable het-
erogeneity among MCI patients: some remain stable for a 
long time, others revert to normal cognitive status, and still 
others develop dementia other than AD [20]. For this reason, 
the definition of reliable neuroimaging markers useful to 
identify an MCI patient at risk of developing AD has not 
been completely achieved yet.  

The purpose of this study was to determine if measure-
ments of hippocampal subfields provide advantages over the 
total hippocampal volume for discriminating the two critical 
early phases of AD: MCI who will or will not convert to AD. 
To do that, we employed a new computational method com-
ing from Fischl’s group (Martinos Center for Biomedical 
Imaging, Boston, Massachusetts; http://surfer.nmr.mgh. har-
vard.edu/). This method allows fully automated segmenta-
tion of the hippocampus subfields from conventional struc-
tural images, by Bayesian techniques using Markov random 
field shape priors learned from manual segmentations. The 
accuracy of this method evaluated against manual segmenta-
tions has already been demonstrated [21].  

To evaluate the diagnostic accuracy of global hippocam-
pal atrophy against the hippocampal subfield volumetry in 
discriminating between the two subtypes of MCI we em-
ployed three different multivariate classification methods: 
Support Vector Machine (SVM), Naïve Bayesian Classifier 
(NBC) and Neural Networks Classifier (NNC). In order to be 
consistent with previous neuroimaging studies and to in-

crease the statistical robustness of our investigation, we used 
data from the Alzheimer’s disease Neuroimaging Initiative 
database (adni.loni.usc.edu).  

2. MATERIALS AND METHOD  

2.1. Data 

Data used in the preparation of this article were obtained 
from the Alzheimer’s disease Neuroimaging Initiative 
(ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 by the National Institute on Aging (NIA), 
the National Institute of Biomedical Imaging and Bioengi-
neering (NIBIB), the Food and Drug Administration (FDA), 
private pharmaceutical companies and non-profit organiza-
tions, as a $60 million, 5-year public-private partnership. 
The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission to-
mography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and 
early Alzheimer’s disease (AD). Determination of sensitive 
and specific markers of very early AD progression is in-
tended to aid researchers and clinicians to develop new 
treatments and monitor their effectiveness, as well as lessen 
the time and cost of clinical trials. 

We considered all the subjects for whom preprocessed 
images were available. We selected 223 patients from the 
Alzheimer's disease Neuroimaging Initiative (ADNI) reposi-
tory (adni.loni.usc.edu): 47 cognitively normal elderly con-
trols (CTR), 55 patients with AD, 32 patients with MCI who 
had converted to AD within 18 months (c-MCI) and 89 pa-
tients with a MCI stable status (nc-MCI). We did not con-
sider MCI patients who had been followed up for less than 
18 months without converting within this time frame. De-
mographical data of this group are shown in Table 1. The 
identification numbers of the images used in this study are 
reported in Table S1 of supplementary materials.  

2.2. MRI Acquisition 

Images were all T1 weighted structural MRI scans from 
1.5 T scanners acquired using a 3D MPRAGE sequence. 
MRI acquisition had been done according to the ADNI ac-
quisition protocol in [22]. For each subject, we used the MRI 
scan from the baseline visit when available and from the 
screening visit otherwise. To enhance standardization across 
sites and platforms of images acquired in the ADNI study, 
pre-processed images that have undergone some post-
acquisition correction of certain image artifacts are available 
[22]. We used those corrected in image geometry for gradi-
ent nonlinearity and corrected for intensity non-uniformity 
due to non-uniform receiver coil sensitivity. All subjects 
were scanned twice at each visit. As explained in [22], MR 
scans were graded qualitatively by the ADNI investigators of 
the ADNI MRI quality control center at the Mayo Clinic for 
artifacts and general image quality. Each scan was graded on 
several separate criteria: blurring/ghosting, flow artifact, 
intensity and homogeneity, signal-to-noise ratio (SNR), sus-
ceptibility artifacts, and gray-white/cerebrospinal fluid con-
trast. For each subject, we used the MRI scan which was 
considered as the “best” quality scan by the ADNI investiga-
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tors (see Supplementary Materials). In the description of the 
ADNI methods (adni.loni.usc.edu), the “best” quality image 
is the one that was used for the complete pre-processing 
steps. We thus used the images which had been selected for 
the complete preprocessing pipeline. No other exclusion cri-
teria based on image quality were applied.  

2.3. Data Analysis 

2.3.1. Hippocampal Subfield Segmentation-Freesurfer 

The hippocampal segmentation was carried out by using 
two successive steps. The whole hippocampus was initially 
segmented by completing the FreeSurfer image analysis 
pipeline (Martinos Center for Biomedical Imaging, Boston, 
Massachusetts), that is documented and freely available for 
download online (http://surfer.nmr.mgh.harvard.edu/). The 
technical details of these procedures were described in pre-
vious publications [23-26]. 

In brief, the processing steps relevant to this work in-
clude removal of nonbrain tissue by using a hybrid water-
shed/surface deformation procedure [25], automated Ta-
lairach transformation, and segmentation of the subcortical 
white matter and deep gray matter volumetric structures (in-
cluding hippocampus, amygdala, caudate, putamen, and ven-
tricles) [26]. Visual inspection and quality control of hippo-
campal segmentations was carried out for all subjects. The 
estimated intracranial volume (ICV) was also calculated. 

Next, automated segmentation of the hippocampus to its 
respective subfields was performed by using Bayesian infer-
ence and a statistical model of the medial temporal lobe. In 
particular, a probabilistic atlas mesh has been previously 
built from the manual delineation of the hippocampus of 
control subjects [21]. A tetrahedrical mesh covering the im-
age domain of interest is defined, which is deformed from its  
 

reference position by sampling from a Markov random field 
model regulating the position of the mesh nodes. The prob-
abilistic atlas is defined by the connectivity of its tetrahedral 
mesh and the probabilities of label occurrences.  

Freesurfer provides an automatic segmentation of hippo-
campus in seven subfields: CA1, CA2–3, CA4-DG, subicu-
lum, presubiculum, fimbria, and hippocampal fissure. It was 
shown that the Dice overlap measures between manual and 
automated segmentation methods were approximately 0.7 for 
all the substructures (from CA2–3 and subiculum at 0.74 to 
CA1 at 0.62). For more details about this technique, and par-
ticularly about the borders used to define the different sub-
fields, see Van Leemput et al. 2009 [21]. Fig. (1) shows an 
example of subfield segmentation obtained by the automatic 
algorithm based on Markov random fields embedded in the 
Freesurfer framework. 

2.3.2. Univariate Analysis 

Univariate analysis was carried out using MATLAB 
(Matlab version R2012b, The MathWorks, Natick, MA). 
First, to assess differences in demographical data among 
groups we used ANOVA analysis for age and clinical data 
and Pearson's chi-square test for gender.  

Next, for each hemisphere we performed a one-way AN-
COVA analysis to investigate differences among the four 
groups in both the global hippocampal volume and hippo-
campal subfield volumes. Age and gender were included in 
the model as covariates of no interest. Post-hoc analysis 
(Tukey t-tests) were performed to investigate differences 
between MCI subtypes. 

To take into account the inter-individual variability, all 
the volumes were normalized by ICV value, where volume-

norm=(volumeraw /ICV)*1,000. Significance level was set at 
0.01 (number of comparisons (4) / 0.05= 0.012). 

 

Table 1. Clinical characteristics of subjects.  

 CTR  
ncMCI  cMCI  

AD  F/p level 

(ANOVA)  

Post-hoc t-test 

(cMCI vs ncMCI)  

N°  47  89  32  55    

Age  78.19±4.4  75.42  75.53  75.89±6  F=2.04/  p=0.938  

 0  ±7.18  ±7.38  .35  p=0.109   

Gender  31; 65.96  58;  22;  35;  p=0.970  p=0.714  

(n°; % male)   65.17  59.46  63.64    

MMSE  28.96±1.1  27.20  26.81  19.11±5  F=68.68/  p=0.290  

 4  ±1.71  ±1.96  .73  p<0.0001   

Global CDR  0.09±0.22  0.50±  0.50±  1.09±0.  F=103.07/  p=0.999  

  0.00  0.00  69  p<0.0001   

GDSCALE  1.19±1.61  1.72±  1.53±  1.85±1.  F=1.75/  p=0.548  

  1.51  1.50  61  p=0.16   

Key: CTR. healthy elderly people; nc-MCI. stable mild cognitive impairment; c-MCI. converted mild cognitive impairment; AD. Alzheimer’s. 
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2.3.3. Multivariate Analysis 

In the classification analysis, we compared performances 
of the whole normalized hippocampal volume and the set of 
all normalized subfield volumes. Since we want to evaluate 
whether hippocampal subfield volumes can be used to im-
prove the AD diagnostic accuracy from the preclinical phase 
to clinical dementia, thus discriminating between c-MCI and 
nc-MCI patients, we selected three different classification 
methods: Support Vector Machine (SVM), Naïve Bayesian 
Classifier (NBC) and Neural Networks Classifier (NNC). All 
these algorithms were embedded in the  MATLAB Statistics 
Toolbox.  

In each model, we first used the set of features relative to 
AD and CTR as training sample and then tested the obtained 
model to classify the MCI population in c-MCI and nc-MCI. 
The assumption behind this hypothesis is that the subpopula-
tion of c-MCI may represent an imaging profile more similar 
to AD subjects than nc-MCI [4]. 

The SVM model was based on the LIBSVM tool [27], 
which provides different SVM formulations, several kernel 
functions and many cross validation strategies. Among sev-
eral tuning option provided by the tool we set a linear kernel 
function. Since the training data is not linearly separable, we 
used a Soft Margin SVM formulation. Using LIBSVM, such 
a model can be built by specifying the C parameter. This 
parameter controls the tradeoff between a wide margin and 
the number of instances not meeting the margin criteria. 
Small C values allow a large margin of separation, but also 
permit a lot of misclassificated instances on the training data. 
Taking a large C, it increases the number of instances that 
meet the margin criteria, but cause a small margin of separa-
tion. To select a proper value for C, we used the built-in 
validation method of LIBSVM that tests for different pa-
rameter values in orders of magnitude and selects the one 
with the best performance. The C values for the different 
SVM models are reported below: 1 (default) for E1 and 0.01 
for E2. Since we tested the models on the dataset formed by 
c-MCI and nc-MCI that was not employed in the training 
phase, no cross validation strategy was used. 

The NBC was implemented using MATLAB: to estimate 
the model, a normal distribution was chosen to model each 
predictor. To estimate the prior probability we used the class 

relative frequencies distribution. The fitted parameters of the 
normal distributions (mean and standard deviation) used in 
classifiers are reported in Table S2 of supplementary materi-
als for each class and attributes. 

The NNC was implemented using the Neural Network 
Pattern Recognition Tool integrated in MATLAB: we 
adopted quite common setting in pattern recognition. Our 
schema consisted of two-layer feedforward network, with 
sigmoid transfer function in both hidden and output layer.  
We trained the network using a batch mode procedure based 
upon the so-called Resilient Backpropagation Algorithm. 
This method converges generally much faster than other de-
scendent methods and it is an adequate choice when NNs are 
employed in pattern recognition problem [28]. The number 
of input neurons was 2 in the experiment E1 and 7 in E2 to 
match the number of input volumes in each experiment. To 
determinate the best number of hidden units, an optimization 
procedure was carried out for each model. Since this number 
depends in a complex way on many factors (the number of 
training cases, the amount of noise or the complexity of the 
classification to be learned), the performance of each model 
were evaluated varying the number of units in the hidden 
layer in a range from 2 to 20. The best configuration was 7 
hidden nodes for E1 and 14 hidden nodes for E2. 

Each model was evaluated in two different settings. In 
the first experiment (E1) the total hippocampal volume for 
both sides was used. In a second experiment (E2), models 
were built upon the set of hippocampal subfield volumes 
(CA1, CA2–3, CA4-DG, subiculum, presubiculum, fimbria, 
and hippocampal fissure) for each hemisphere. Moreover, in 
order to investigate the presence of subfields more informa-
tive of MCI conversion, receiving operating characteristic 
(ROC) curves were calculated for each subfield volume, 
using Perfcurve function of MATLAB Statistics Toolbox. 
Roc curves provide a graphical representation of the model’s 
goodness in discriminating among groups by a plot of the 
true positive rate (sensitivity) versus the false positive rate 
(1-specificity) for various thresholds. The discriminatory 
power was expressed by the area under the curve (AUC). 
AUC statistical comparisons among subfields in distinguish 
between nc-MCI and c-MCI were carried out to establish 
whether more informative subfields exist. 

 

Fig. (1). Hippocampal subfields segmentation. 
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3. RESULTS 

3.1. Univariate Analysis 

There was no significant difference in demographic and 
depression scales between all groups as shown in the Table 
1, whereas, obviously, AD patients showed the lowest scores 
in cognitive tests (MMSE and global CDR). Of note, post-
hoc analysis (Tukey t-tests) revealed not significant differ-
ences in all demographic and clinical variables between the 
two MCI subtypes. 

Table 2 showed differences among all groups in total 
hippocampal volumes and hippocampal subfield volumes, 
both of them normalized by ICV. Overall, ANCOVA analy-
sis revealed well-known patterns of hippocampal atrophy 
including either the total hippocampus or subfields (in par-
ticular the subiculum, presubiculum, CA1-4 and Fimbria) in 
AD patients. Post-hoc analysis (Tukey t-tests) comparing the 
two MCI subtypes, revealed that the total right Hippocampal 
volume allows to differentiate patients who will converted 
from those who will not. A similar significant volume reduc-
tion in c-MCI compared to nc-MCI was also observed when 
considering subiculum, presubiculum and CA4-DG.  

3.2. Multivariate Analysis 

Given the intrinsic limitation of univariate analysis in 
discriminating groups at the group level only, next we per-

formed multivariate analysis with the aim to define new reli-
able biomarkers of early AD.   

First, we applied classification models to determine the 
Accuracy, Sensitivity and Specificity using left and right 
hippocampal volumes as features in the training set (Table 
3). All models reached similar, sufficient, performance in the 
individual classification of patients with nc-MCI and c-MCI, 
with an accuracy value of about 66%.  

Next, the result reported in Table 4 were referred to the 
model trained using the whole set of subfield volumes. All 
classifiers performed better than in the previous case and the 
best result is achieved by the NN model, reaching 72% of 
accuracy.   

Lastly, the AUC statistical comparisons among subfields 
suggested that subiculum and presubiculum are more infor-
mative than the other hippocampal subregions in discrimi-
nating between nc-MCI and c-MCI, with AUC values of 
0.76 and 0.77 respectively (see Table 5). ROC curves for 
each subfield volume are displayed in Fig. (2).  

4. DISCUSSION 

Growing interest has developed in hippocampal subfield 
volumetry over the past few years in order to use this ana-
tomical metric as biomarkers for the early diagnosis of Alz-

Table 2. ANCOVA analysis. Normalized hippocampal total volumes and subfields volumes (mean ± standard deviation) in all 

groups are showed. Post-hoc t-test (Tukey) has been reported for the comparison between MCI subtypes.  

Anatomic al Features  CTR  MCIc  MCs  AD  F/p-level  Post-hoc t-test 

(cMCI vs ncMCI)  

Right Hipp  36.27 ±4.46  28.94 ±5.95  32.61 ±5.10  25.88 ±5.47  F= 26.9 / P< 0.000001  P=0.0003  

Left Hipp  34.29 ±5.45  28.11 ±5.54  32.08 ±5.95  25.86 ±5.16  F= 19.8 / P< 0.000001  P=0.06  

Right PreSub  2.57± 0.34  2.11± 0.93  2.45± 0.37  1.97± 0.32  F= 44.1 / P< 0.000001  P=0.00009  

Left PreSub  2.59± 0.44  2.12± 0.33  2.48± 0.46  2.01± 0.34  F= 28.1 / P< 0.000001  P=0.001  

Right CA1  2.20± 0.28  1.92± 0.29  2.01± 0.24  1.82± 0.29  F= 20.2 / P< 0.000001  P=0.56  

Left CA1  2.06± 0.35  1.89± 0.30  1.97± 0.27  1.89± 0.29  F= 4.1/ P=0.007  P=0.65  

Right CA 23  6.03± 0.74  5.41± 0.92  5.94± 0.78  5.10± 0.75  F= 19.7 / P< 0.000001  P=0.02  

Left CA 23  5.52± 1.00  5.02± 0.73  5.58± 0.88  4.92± 0.64  F= 10.6 / P=0.0000 02  P=0.03  

Right Fimbria  0.27± 0.10  0.19± 0.14  0.22± 0.12  0.16± 0.11  F= 10.7 / P=0.000001  P=0.67  

Left Fimbria  0.29± 0.13  0.21± 0.12  0.26± 0.15  0.16± 0.13  F= 10.5 / P=0.000002  P=0.51  

Right Sub  3.74± 0.43  3.03± 0.52  3.55± 0.54  2.81± 0.43  F= 49.8 / P< 0.000001  P=0.00005  

Left Sub  3.60± 0.57  3.04± 0.55  3.57± 0.61  2.86± 0.45  F= 29.5 / P= 0.000002  P=0.0003  

Right CA4DG  3.36± 0.42  2.91± 0.50  3.25± 0.45  2.71± 0.41  F= 28.8 / P< 0.000001  P=0.008  

Left CA4DG  3.13± 0.54  2.68± 0.44  3.05± 0.53  2.59± 0.39  F= 18.5 / P< 0.000001  P=0.009  

Right Fissure  0.31± 0.16  0.24± 0.12  0.30± 0.17  0.24± 0.15  F= 3.1 / P= 0.02  P=0.38  

Left Fissure  0.26± 0.16  0.23± 0.11  0.27± 0.14  0.24± 0.17  F= 0.77 / P=0.55  P=0.71  

Key: CTR. healthy elderly people; nc-MCI. stable mild cognitive impairment; c-MCI. converted mild cognitive impairment; AD. Alzheimer’s disease; CDR. 

Clinical Dementia Rating; MMSE. Mini Mental State Examination; GDS. Geriatric Depression Scale. 
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heimer’s disease.  Aim of this study was to determine if 
measurements of hippocampal subfields provide advantages 
over total hippocampal volume for discriminating MCI indi-
viduals who are (or not) suffering from prodromal AD. Ad-
vanced automatic hippocampal measurements were obtained 
by applying a new validated algorithm based on Markov 
random fields embedded in the Freesurfer framework.  

Table 3. Classification performances of whole Hippocampal 

Volume in the individual discrimination between c-

MCI and nc-MCI.  

Mode  Accuracy  Sensitivity  Specificity  

SVM  0.6612  0.6404  0.7188  

NN  0.6694  0.6517  0.7188  

NB  0.6529  0.6292  0.7188  

SVM: Support Vector Machine; NBC: Naïve Bayesian Classifier; NNC: 

Neural Networks Classifier.  

Table 4. Classification performances of Hippocampal Sub-

field Volumes in the individual discrimination be-

tween c-MCI and nc-MCI.  

Mode  Accuracy  Sensitivity  Specificity  

SVM  0.7107  0.6966  0.7500  

NN  0.7273  0.6966  0.8125  

NB  0.6860  0.6742  0.7188  

SVM: Support Vector Machine; NBC: Naïve Bayesian Classifier; NNC: 

Neural Networks Classifier.  

Table 5. Area under curve (AUC) comparison among sub-

field volumes in the individual discrimination be-

tween c-MCI and nc-MCI. 

Anatomical features  AUC (Area Under Curve)  

CA1  0.6166  

CA23  0.7012  

CA4DG  0.7128  

Fimbra  0.5864  

Sub  0.7573  

PreSub  0.7746  

Hipp Fissure  0.6096  

 

Historically MRI-based hippocampal volume measure-
ment has been proposed as potential biomarker for the early 
AD diagnosis [1]. However the accuracy of this measure-
ment may be limited by a moderate sensitivity and a rather 
low specificity to AD pathophysiological processes. This 
later hypothesis has been recently proved by a large amount 
of post-mortem [9, 10, 29-31] and neuroimaging studies [15-
17, 19, 32-36] which demonstrated that neurofibrillary pa-
thology and neuronal loss differentially harm hippocampal 
subregions early in the AD course. The first neuroimaging 
evidence on the presence of regional hippocampal abnor-
malities in AD patients derived from manual delineation [16, 
17], describing the presence of a specific involvement of the 
subiculum and CA sectors. However, this kind of method is 
time-consuming and dependent on rater experience, thus 
making it difficult to assess reliability between the methods 

 

Fig. (2). Receiving operating characteristic (ROC) curves comparison among hippocampal subfield volumes in the individual discrimination 

between c-MCI and nc-MCI. 
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and the application on large samples. With the advent of 
advanced neuroimaging algorithms, new methods perform-
ing fully automated measurements and segmentation of 
microstructural changes in the hippocampal subregions have 
been proposed [37-40]. Although, these studies confirmed 
the selective patterns of atrophies in hippocampal subfields 
described in post-mortem studies, they generally reported 
differences between patients and controls only at a group 
level, thus with a very limited translation to an individual 
diagnosis in more clinical settings.  

Another limitation, in this field of study, is the less atten-
tion paid to the use of hippocampal subfields as markers to 
classify MCI patients who remained stable (nc-MCI) and 
MCI who deteriorated to AD (c-MCI). Up to now, there are 
very few studies in this specific topic. For instance, in a lon-
gitudinal study, Frankò et al. [39] comparing the hippocam-
pal atrophy rates maps of progressive MCI patients and sta-
ble MCI, described higher atrophy rates in the antero-lateral 
region of the right hippocampus for the first group. They 
also showed that the atrophy rate of this region is able to 
discriminating between these two groups with a sensitivity 
value of 74.4 %. 

In line with this latter evidence, we demonstrated that, 
using three different classification models for classifying 
MCI patients who convert in AD from MCI patients who 
remain stable, combined subfield volumes overcome the 
accuracy obtained when total hippocampal volume was en-
tered in the model (72% versus 66%). The obtained accuracy 
improvement confirmed the hypothesis that microstructural 
changes in the hippocampal subregions may have a higher 
specificity, thus reinforcing a better identification of MCI-
related neurodegenerative processes. 

Our work is one of the first multivariate neuroimaging 
study which addresses the potential of hippocampal subfield 
volumetry in improving the diagnostic accuracy for dis-
criminating between MCI individuals who are or not suffer-
ing from prodromal AD. Among all hippocampal subfields, 
subiculum and presubiculum demonstrated the greatest dis-
criminant power in distinguish nc-MCI from c-MCI. This 
pattern of hippocampal subfield loss is in agreement with 
previous post-mortem and neuroimaging studies [14, 38, 40, 
41] and highlighted the role of the subicular region in AD-
related neurodegenerative processes. Indeed, the subiculum 
provides the principal neocortical output of the hippocampus 
through fibers that are part of the alveus and the fimbria [8]. 
Therefore, subicular atrophy could be interpreted as the con-
sequence of neurodegeneration and metabolic derangement 
of the CA1 subfield [11] or as a structural modification oc-
curring in response to an altered network connectivity.  

However, automated hippocampal subfield segmentation 
as performed by Freesurfer is not without limitations. As 
recently reviewed by Wisse et al. [42], Freesurfer algorithms 
are characterized by some concerns. For instance, the parce-
lation scheme used by FreeSurfer for the segmentation is 
based on the subfield distribution in one coronal section in 
the body of the hippocampus [42]. This means that subfields 
were segmented along the complete long axis of the hippo-
campus. However, the presence and position of the subfields 
differ along this axis [8, 42]. Consequently, the locations of 
the boundaries between subfields in this segmentation proto-

col might be in mismatch with the anatomical atlases in a 
large part of the long axis.  

CONCLUSION 

In conclusion, using three different classification models, 
we concluded that hippocampal subfield measurement pro-
vides a more classification accuracy, compared to global 
hippocampal volume, in discriminating MCI individuals who 
are suffering from prodromal AD. Although the obtained 
performance are in line with literature, these improvements 
are not enough to demonstrate that hippocampal subfields, as 
segmented by Freesurfer, might be considered as a reliable 
biomarker with a high translational potential in everyday 
clinical practice. Given the constant technical advances, it is 
likely that some of the limitations inherent to Freesurfer al-
gorithms will be overcome in the next years. However, con-
sidering the performance reached by other groups using dif-
ferent hippocampal subfield segmentation approaches [37-
40], we retain that a useful future improvement will derive 
from the implementation of a multimodal approach. Indeed, 
while anatomical MRI is the main structural neuroimaging 
method used in most AD studies and clinical trials, diffusion 
tensor images (DTI) is sensitive to microscopic white matter 
(WM) changes not detectable with standard MRI, offering 
additional markers of neurodegeneration. A large amount of 
evidence has recently raises doubts about the sensitivity of 
hippocampal volume measurements [43] to detect brain al-
terations that could be the earliest signs of AD. In fact, it is 
well-known that DTI metric detected in the hippocampus is a 
better neuroradiologic marker of underlying memory decline 
than volume [44]. For this reason, the use of combined bio-
markers seems to be a rational and a future promising ap-
proach for enhancing diagnostic accuracy in identifying AD-
like phenotypes.  
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